
Process With Purpose
How, Why & When Software Teams Add Structure

Hey! 👋
Founding engineer at Enhance Labs

Software Development Engineer at Amazon in Brisbane

Government, robotics

Graduated UQ mid 2020

Today

How I think about software processes

War stories when processed helped (or didn’t)

A deep dive into what a few processes look like

When to use certain processes and when not to

Jump in any time with questions

All these opinions are my own

What is software process?

Process is everything a software team does from idea to maintaining in
production.

What are some examples?

There’s no one-size-fits-all process

Very few standards

Processes should be thought of as building blocks

That means you’ll be a part of shaping these processes on the teams you join

Which is a beautiful and dangerous thing

Why is it important to talk about?

Software process from first principles

Survival - you can fix it when it’s broken

Quality - it breaks less often

Velocity - you can build/improve it faster

Alignment - everyone is building towards the same goal

Resilience - fixing itself when it breaks

Survival
Know the moment something’s broken

We found and fixed our bug, but
that’s not really the point…

These logs are hard to read

Logs from different users and
interspersed

Logs have no context

How we improved (still not good)

This is good, but we still had to
log in to production

We didn’t need to log into our server
to get here!

Building Blocks for Survival

Process Building Block When is it important?

Structured logs/metrics/OTEL*** As soon as you have paying users

On call rotations & handoff meetings 10,000+ users, or multiple geographies, or mission
critical software

Runbook 5+ engineers

Knowledge base 5+ engineers

*** These aren’t really processes, but they’re table stakes

Deep dive: Runbooks

A place where you document steps to troubleshoot and resolve software issues
seen in the past.

Your software will outgrow the RAM in your head, you’ll get new hires, software
will change ownership

Any engineer that operates your software should be able to execute them

Every incident that hasn’t happened before merits a new entry in a runbook

Deep dive: An example runbook entry

Application Randomly Freezes/Hangs

1. Go to
https://ap-southeast-2.console.aws.amazon.com/cloudwatch/home?region=ap-southeast-2

2. Get the userId for the user reporting the issue
3. Paste the following query

```
fields @timestamp, @message
| sort @timestamp desc
| limit 100
| filter @message like /{userId}/
```

https://ap-southeast-2.console.aws.amazon.com/cloudwatch/home?region=ap-southeast-2#logsV2:logs-insights

Industry trends for Survival Processes

We are converging towards Open Telemetry as a standard for observability

On call rotations are totally random in larger companies - follow the sun, total
team ownership, separate SRE/DevOps teams

Runbook & knowledge base maintenance is getting easier with LLMs

AI being adopted for initial triage and simple mitigation steps for On
call/SRE/DevOps

Quality
Ship beautiful stuff, stop defects early

What do we do?

Yep, it’s slow, what now?

Building Blocks for Quality
Process Building Block When is it important?

Code reviews Multiple skill levels in team or multi-ownership of
code or mission critical software

Automated testing As soon as you have paying users. There’s
multiple levels to testing.

Design reviews 5+ engineers

Security reviews, SOC2, ISO27001 If your customers require it. Do the right thing.

QA This is an interesting one

Post mortems When something goes really wrong

What?

The backend received 1,800,000 requests from User A in the span of 5 minutes. 40,000 genuine customer
requests were dropped because of this. Customer impact was mitigated by deleting User A’s account.

Why did this happen?

User A’s account had been compromised and was used by a bad actor.

Why did User A’s account need to be deleted?

The engineers did not have a way to block incoming requests from a particular user, revoke permissions or reset
an account.

Why didn’t the engineers have a way to block incoming requests?

The engineers hadn’t thought of this yet as a possible incident

Example: Denial of Service Post Mortem

Lessons Learned

- User account behaviour is unpredictable.
- A single user is capable of taking down the entire backend.

Next Steps

- Implement a way to revoke a user’s credentials
- Implement a way to reset a user’s password
- Globally rate limit all individual users to 10 TPS
- Implement a way to block certain users if we suspect their account has

been compromised.

Denial of Service Post Mortem cont.

Industry Trends for Quality Processes

AI as a code reviewer

AI powered

QA testing → QA engineering

Static analysis, linters, other little things all very table stakes

Velocity
Ship as fast and as much as possible

Building Blocks for Velocity

Process Building Block When is it important?

Continuous deployment Day 1

Feature flags 1000+ users

Microservices 30+ engineers. Hold out as long as you can.

Deep dive: Continuous Deployment

Code deploys automatically on commit

Run some tests

Monitor our metrics

If it goes into alarm, rollback to the
previous version

Safer, more reliable deployments

Don’t need to deploy 100% at once

Not a deep dive: Microservices

https://www.youtube.com/watch?v=y8OnoxKotPQ

https://www.youtube.com/watch?v=y8OnoxKotPQ

Industry Trends for Velocity Processes

Feature flags and trunk-based development seem to be taking over as normal
now

Microservices aren’t cool anymore, but still necessary at scale

Fully autonomous AI agents submitting code reviews for simple things. Human
in the loop code writing for complex stuff.

In general code is getting cheaper to write

Alignment
Many people, one direction

Building Blocks for Alignment

Process Building Block When is it important?

Team standups Remote work or 5+ engineers

Design reviews 5+ engineers

User stories/Requirements gathering Always (in some form). Formally, when you need to
have structured conversations with your
customers

Sprints/Kanban/Forward planning When you have more than a week’s worth of work
before the next milestone

Async communication seems to be the way to go even for teams that work in
person

Design reviews are getting cheaper to make with AI. Micro-design reviews, more
asynchronous, AI as a creator and a reviewer

Agile frameworks are the industry standard in non-tech companies. Tech
companies are Agile but tend not to follow a specific framework

Industry Trends for Alignment

Recover and scale gracefully (software AND people)

Resilience

Building Blocks for Resilience

Process Building Block When is it important?

Load testing 1000+ users or when you anticipate growth or
unpredictable traffic

Game days Very, very high scale or upcoming events

Dynamic configuration 10000+ users, or an outage where it would have
been useful

(People) Team retrospectives More than 1 engineer

(People) Team days If your company says yes 😊

Industry Trends for Resilience

It used to be that most of industry didn’t need/use these things, that’s changing

Open source tooling exists but internal tooling is still much better (this will
probably change)

Summary: Process Thinking

Think from first principles

Treat processes as building blocks, not frameworks

Don’t be afraid to throw process away

Make sure your process serves you and your team.

Lack of process and too much process equally can cause problems.

Q&A

Thanks for listening! Get in touch with me here.

Resumes, interview prep questions, etc

Happy to help if I can

